Cerebral activation using a MR-compatible piezoelectric actuator with adjustable vibration frequencies and in vivo wave propagation control.
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) studies are increasingly used in patients with brain tumors near the sensory motor cortex for planning of therapy. Passive stimuli can be helpful for reproducible results. The purpose of our study was to investigate frequency and amplitude dependencies of cerebral activation patterns using a vibratory stimulus that involves sensory and motor function and allows exact adjustment of vibratory frequencies and direct control of penetration depth into the tissue. Fifteen volunteers were studied with fMRI during vibratory stimulation of the right biceps muscle utilizing a block design (frequencies: 150 and 300 Hz, amplitudes: 400, 600, and 800 microm). In addition, visualization of the wave propagation into the biceps tissue itself was performed with a modified phase contrast sequence. A specially developed MR-compatible mechanical oscillator was used to apply the vibrotactile sensations. fMRI revealed activation of the left primary somatosensory cortex during application of both vibratory frequencies. Additionally, activity of the primary and supplementary motor cortex was revealed using 150-Hz stimuli, while only minimal at 300 Hz. The activity strength correlated with increasing stimulus amplitudes and the visualized penetration depth. Activation of motor areas was more pronounced at the beginning of the rest period. In conclusion, sensory motor areas can be activated using a piezoelectric actuator, with less pronounced motor area activation at higher frequencies. Our setup allowed local control of stimulus penetration through the tissue correlated to central activation, providing objective stimulus control. The pronounced activation of the motor cortex during the rest condition may reflect the subjective feeling of arm movement after the end of the stimulus.
منابع مشابه
Temperature Effects on Nonlinear Vibration of FGM Plates Coupled with Piezoelectric Actuators
An analytical solution for a sandwich circular FGM plate coupled with piezoelectric layers under one-dimension heat conduction is presented in this paper. A nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations. By adding an incremental dynamic state to the pre-vibration state, the differential equations are derived. The role of thermal en...
متن کاملStudy on Free Vibration and Wave Power Reflection in Functionally Graded Rectangular Plates using Wave Propagation Approach
In this paper, the wave propagation approach is presented to analyze the vibration and wave power reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is one of the useful methods for analyzing the vibration of structures. This method gives the reflection and propagation matrices that are valuable for the analysis of mechanical energy...
متن کاملFree vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach
In this paper, wave propagation approach is used to analysis the free vibration and buckling analysis of the thick rectangular plates based on higher order shear deformation plate theory. From wave viewpoint, vibrations can be considered as traveling waves along structures. Waves propagate in a waveguide and reflect at the boundaries. It is assumed that the plate has two opposite edge simply su...
متن کاملVibration Control of a Flexible Link Manipulator Using Smart Structures
The active vibration suppression of a flexible link manipulator using a smart structure (piezoelectric actuator) is investigated. For this purpose, a Finite Element (FE) model is developed for the modal and transient analysis of a cantilever beam and a flexible link manipulator. The novelty of this work is in the development of an accurate finite element model of a piezoelectric and beam/manipu...
متن کاملActive Vibration Suppression of a Nonlinear Flexible Spacecraft
In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2005